Monday, May 24, 2021

如何在WinRAR中调用火绒杀毒软件扫描病毒

 1、首先用WinRAR打开一个压缩包,点击“扫描病毒”。

如何在WinRAR中调用火绒杀毒软件扫描病毒

2、win10点开默认的杀毒软件为windows defender,我们把它换成“用户自定义”。
如何在WinRAR中调用火绒杀毒软件扫描病毒

3、点浏览,找到自己安装火绒的文件夹,然后在sysdiag/bin子目录下找到hipsmain.exe。
如何在WinRAR中调用火绒杀毒软件扫描病毒

4、参数一栏填入如下字符:

-s "%f"
如何在WinRAR中调用火绒杀毒软件扫描病毒

5、点确定,会调出火绒软件开始扫描,结束后自行关闭窗口即可

Monday, May 17, 2021

温差电池

1821年,赛贝克发现,把两种不同的金属导体接成闭合电路时,如果把它的两个接点分别置于温度不同的两个环境中,则电路中就会有电流产生。这一现象称为塞贝克(Seebeck)效应,这样的电路叫做温差电偶,这种情况下产生电流的电动势叫做温差电动势。例如,铁与铜的冷接头为1℃,热接头处为100℃,则有5.2mV的温差电动势产生。


温差电池

温差电池

用半导体制成的温差电池赛贝克效应较强,热能转化为电能的效率也较高,因此,可将多个这样的电池组成温差电堆,作为小功率电源。它的工作原理是,将两种不同类型的热电转换材料N型和P型半导体的一端结合并将其置于高温状态,另一端开路并给以低温时,由于高温端的热激发作用较强,空穴和电子浓度也比低温端高,在这种载流子浓度梯度的驱动下,空穴和电子向低温端扩散,从而在低温开路端形成电势差;如果将许多对P型和N型热电转换材料连接起来组成模块,就可得到足够高的电压,形成一个温差发电机。


温差电技术研究始于20世纪40年代,于20世纪60年代达到高峰,并成功地在航天器上实现了长时发电。当时美国能源部的空间与防御动力系统办公室给出鉴定称,“温差发电已被证明为性能可靠,维修少,可在极端恶劣环境下长时间工作的动力技术”。近几年来,温差发电机不仅在军事和高科技方面,而且在民用方面也表现出了良好的应用前景。


在远程空间探索方面,人们从上个世纪中叶以来不断将目标投向更远的星球,甚至是太阳系以外的远程空间,这些环境中太阳能电池很难发挥作用,而热源稳定,结构紧凑,性能可靠,寿命长的放射性同位素温差发电系统则成为理想的选择。因为一枚硬币大小的放射性同位素热源,就能提供长达20年以上的连续不断的电能,从而大大减轻了航天器的负载,这项技术已先后在阿波罗登月舱、先锋者、海盗、旅行者、伽利略和尤利西斯号宇宙飞船上得到使用。


此外,据德国《科学画报》杂志报道,来自德国慕尼黑的一家芯片研发企业研究出的这种新型电池,主要由一个可感应温差的硅芯片构成。当这种特殊的硅芯片正面“感受”到的温度较之背面温度具有一定温差时,其内部电子就会产生定向流动,从而产生微电流。负责研发这种电池的科学家温纳·韦伯介绍说,“只要在人体皮肤与衣服等之间有5℃的温差,就可以利用这种电池为一块普通的腕表提供足够的能量”。


虽然温差发电已有诸多应用,但长久以来受热电转换效率和较大成本的限制,温差电技术向工业和民用产业的普及受到很大制约。虽然最近几年随着能源与环境危机的日渐突出,以及一批高性能热电转换材料的开发成功,温差电技术的研究又重新成为热点,但突破的希望还是在于转换效率的稳定提高。可以设想一下,在温差电池技术成熟以后,我们的手机、笔记本电脑电池就可以利用身体与外界的温度差发电,而大大延长其使用时间。


2塞贝克效应

编辑


塞贝克(Seeback)效应,又称作第一热电效应,它是指由于温差而产生的热电现象。


在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。


塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。


半导体的温差电动势较大,可用作温差发电器。


原理

由于不同的金属材料所具有的自由电子密度不同,当两种不同的金属导体接触时,在接触面上就会发生电子扩散。电子的扩散速率与两导体的电子密度有关并和接触区的温度成正比。


设导体A和B的自由电子密度为NA和NB,且有NA>NB,电子扩散的结果使导体A失去电子而带正电,导体B则因获得电子而带负电,在接触面形成电场。这个电场阻碍了电子继续扩散,达到动态平衡时,在接触区形成一个稳定的电位差,即接触电势。


美国科学家发现,鲨鱼鼻子里的一种胶体能把海水温度的变化转换成电信号,传送给神经细胞,使鲨鱼能够感知细微的温度变化,从而准确地找到食物____科学家猜测,其他动物体内也可能存在类似的胶体.这种因温差而产生电流的性质与半导体材料的热电效应类似,人工合成这种胶体,有望在微电子工业领域获得应用。


美国旧金山大学的一位科学家在1月30日出版的英国《自然》杂志上报告说,他从鲨鱼鼻子的皮肤小孔里提取了一种与普通明胶相似的胶体,发现它对温度非常敏感,0.1℃的温度变化都会使它产生明显的电压变化。


鲨鱼鼻子的皮肤小孔布满了对电流非常敏感的神经细胞.海水的温度变化使胶体内产生电流,刺激神经,使鲨鱼感知到温度差异.科学家认为,借助这种胶体,鲨鱼能感知到0.001℃的温度变化,这有利于它们在海水中觅食。


哺乳动物靠细胞表面的离子通道感知温度:外界温度变化导致带电的离子进出通道,产生电流,刺激神经,从而使动物感知冷暖.与哺乳动物的这种方式不同,鲨鱼利用胶体,不需要离子通道也能感知温度变化。


热电制冷

热电制冷又称作温差电制冷,或半导体制冷,它是利用热电效应(帕尔帖效应)的一种制冷方法。


热电效应

1834年法国物理学家帕尔帖在铜丝的两头各接一根铋丝,在将两根铋丝分别接到直流电源的正负极上,通电后,发现一个接头变热,另一个接头变冷。这说明两种不同材料组成的电回路在有直流电通过时,两个接头处分别发生了吸放热现象。这就是热电制冷的依据。


半导体材料具有较高的热电势可以成功地用来做成小型热电制冷器。图1示出N型半导体和P型半导体构成的热电偶制冷元件。用铜板和铜导线将N型半导体和P型半导体连接成一个回路,铜板和铜导线只起导电的作用。此时,一个接点变热,一个接点变冷。如果电流方向反向,那么结点处的冷热作用互易。 热电制冷器的产冷量一般很小,所以不宜大规模和大制冷量使用。但由于它的灵活性强,简单方便冷热切换容易,非常适宜于微型制冷领域或有特殊要求的用冷场所。


热电制冷的理论基础是固体的热电效应,在无外磁场存在时,它包括五个效应,导热、焦耳热损失、西伯克(Seebeck)效应、帕尔帖(Peltire)效应和汤姆逊(Thomson)效应。 一般的冷气与冰箱运用氟氯化物当冷媒,造成臭氧层的被破坏.无冷媒冰箱(冷气)因而是环境保护的重要因素.利用半导体之热电效应,可制造一个无冷媒的冰箱。 这种发电方法是将热能直接转变成电能,其转变效率受热力学第二定律即卡诺效率(Carnot efficiency)的限制.早在1822年西伯即已发现,因而热电效应又叫西伯效应(Seebeck effect)。


3汤姆逊效应

编辑


威廉·汤姆逊1824年生于爱尔兰,父亲詹姆士是贝尔法斯特皇家学院的数学教授,后因任教格拉斯哥大学,在威廉8岁那年全家迁往苏格兰的格拉斯哥。汤姆逊十岁便入读格拉斯哥大学 (你不必惊讶,在那个时代,爱尔兰的大学会取录最有才华的小学生),约在14岁开始学习大学程度的课程,15岁时凭一篇题为“地球形状”的文章获得大学的金奖章。汤姆逊后来到了剑桥大学学习,并以全年级第2名的成绩毕业。他毕业后到了巴黎,在勒尼奥的指导下进行了一年实验研究。1846年,汤姆逊再回到格拉斯哥大学担任自然哲学 (即现在的物理学) 教授,直到1899年退休为止。


汤姆逊在格拉斯哥大学创建了第一所现代物理实验室;24岁时发表一部热力学专着,建立温度的“绝对热力学温标”;27岁时发表《热力学理论》一书,建立热力学第二定律,使其成为物理学基本定律;与焦耳共同发现气体扩散时的焦耳-汤姆逊效应;历经9年建立欧美之间永久大西洋海底电缆,由此获得“开尔文勋爵”的贵族称号。 汤姆逊一生研究范围相当广泛,他在数学物理、热力学、电磁学、弹性力学、以太理论和地球科学等方面都有重大的贡献。撇开这些不谈,回到“汤姆逊效应”这个主题上来。在介绍汤姆逊效应之前,还是先介绍一下前人所做的工作。


1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,此所谓“塞贝克效应”。1834年,法国实验科学家帕尔帖发现了它的反效应:两种不同的金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差,此所谓珀尔帖效应。1837年,俄国物理学家愣次又发现,电流的方向决定了吸收还是产生热量,发热(制冷)量的多少与电流的大小成正比。


1856年,汤姆逊利用他所创立的热力学原理对塞贝克效应和帕尔帖效应进行了全面分析,并将本来互不相干的塞贝克系数和帕尔帖系数之间建立了联系。汤姆逊认为,在绝对零度时,帕尔帖系数与塞贝克系数之间存在简单的倍数关系。在此基础上,他又从理论上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。这一现象后叫汤姆孙效应(Thomson effect),成为继塞贝克效应和帕尔帖效应之后的第三个热电效应(thermoelectric effect)。


汤姆逊效应是导体两端有温差时产生电势的现象,帕尔帖效应是带电导体的两端产生温差(其中的一端产生热量,另一端吸收热量)的现象,两者结合起来就构成了塞贝克效应。


4应用

编辑


最早的温差发电机于1942 年由苏联研制成功,发电效率为1.5%~2%。之后一些特殊 领域对电源的需求大大刺激了温差电技术的发展。从20 世纪60 年代开始陆续有一批温 差电技术的发电机成功的哦能够与航天飞机、军事和远洋探索。近几年随着科学技术的 不断进步,温差发电机正逐渐拓宽其应用领域,不仅在军事和高科技方面,而且在民用 方面也表现出良好的义勇前景,随着能源与环境危机的日益逼近,科学家在利用低品位 与废能源发电方面加大了研究力度,部分研究成果已步入产业化。


远程空间探索


自从 1969 年阿波罗号飞船成功登陆月球,人类对太空的探索一直不断深入地进行 中。随着探索空间的拓展,对太空中应用的电池也提出了较高的要求。太阳能电池在远 离太阳、黑暗、冰冷和空洞的世界里很难发挥作用。使用热源稳定、结构紧凑、性能可 靠、寿命长的放射性同位素温差发电系统成为理想的选择。利用温差电技术,一枚硬币 大小的放射性同位素热源能够提供长达二十年以上的连续不断的电能,这是其他任何一 种热能源技术所不能比拟的。而且温差发电系统拥有更诱人的体积和重量。这使得发电 机的重量大大的减小,完全可以满足飞船在航行、通讯和科学一起使用方面的所有用电 要求.


军事


为满足陆军对电源系统的特殊要求---轻便、灵活、充电方便等,从1999 年开始, 美国能源部启动了“能源收获科学与技术项目”,研究利用温差发电模块,将士兵的体 热收集起来用于电池充电。其近期目标是实现对 12 小时的作战任务最少产出 250 瓦小 时的电能,目前该研究项目取得了多项研究成果。


远距离通讯、导航和设备保护


温差电技术性能稳定、无需维护的特点使其在发电和输送点困难的偏远地区发挥着 重要的作用。已用于基地、沙漠、森林等无人地区的微波中继电站电源、远地自动无线 电接收装置和自动天气预报站、无人航标灯、油管的阴极保护等。


小功率电源


体积小、重量轻、无振动、无噪音使温差发电机非常适合用作小功率电源(小于5W), 在各种无人监视的传感器、微笑短程通讯装置以及医学和生理学研究用微小型发电机、 传感电路、逻辑门和各种纠错电路需要的短期微瓦、毫瓦级电能方面,温差技术均可发 挥其独特的作用。


温差电传感器


最近,基于热电转化材料的 Seebeck 效应,许多新兴的温差电传感器被研制成功, 并用于低温温度测量、单像素红外线和X 射线探测、氢气和其他可燃气体泄漏检测等[1]。

http://blog.sciencenet.cn/blog-39359-1156608.html

功函数的基本概念

 http://blog.sciencenet.cn/blog-60562-610155.html

1. 什么是功函数

     把一个电子从固体内部刚刚移到此物体表面所需的最少的能量。功函数的大小通常大概是金属自由原子电离能的二分之一。同样地将真空中静止电子的能量与半导体费米能级的能量之差定义为半导体的功函数。功函数的单位:电子伏特,eV


(功函数结构示意图。参考:M.S.Xue et al.,Physica B 406 (2011) 4240--4244)

    功函数(work function)又称功函、逸出功,在固体物理中被定义成:把一个电子从固体内部刚刚移到此物体表面所需的最少的能量。

    真空能级:电子达到该能级时完全自由而不受核的作用。

    功函数:真空能级与费米能级之差。

 

2. 功函数的分类

    一般情况下功函数指的是金属的功函数,非金属固体很少会用到功函数的定义,而是用接触势来表达。

    功函数与金属的费米能级密切关联,但并不完全相等。这是由于固体自身具有表面效应,原包中靠近表面的电荷分布与理想的无限延伸重复排列的布拉菲格子固体想必严重扭曲。

    一般将功函数按照电子能量的来源,或者说是电子受激发的方式将功函数分为“热功函数”和“光电功函数”。

   (1)当电子从热能中吸收能量,激发到达表面我们称之为热功函数。

   (2)当电子从光子中吸收能量,激发到达表面时我们称之为光电功函数。

 

3. 功函数的作用

   (1)当金属与半导体接触,金属与半导体之间功函数差相对很小时(同时半导体有高浓度的杂质),也就是说接触面势垒很窄的情况下,形成欧姆接触。

   (2)当半导体与金属功函数相差较多,形成势垒,在金半接触面形成势垒结,形成肖特基二极管(也叫做整流二极管)的结构基础。

   (3)金半接触金属电子激发到达半导体晶体,激发半导体可发出各种可见光,根据此原理可以制成各种发光二极管,而这里面的激发原理与功函数相关。

   (4)在mos晶体管中调节阈值电压,也就是说若要改变mos晶体管的阈值电压,可以通过改变栅极金半功函数实现。

 

4. 影响功函数的因素

    在设计功函数时要考虑影响功函数的几个因素:

   (1)晶体取向:一般情况下晶体密排面具有较大的功函数。

   (2)表面缺陷、吸附原子等:造成电子表面势垒的不同,引起功函数的变化。

   (3)台阶密度大的功函数小。

   (4)材料种类:这是影响功函数最主要的因素。由不同元素构成的物质功函数不同。

 

5. 功函数的测量方法

    功函数的测量方法分为“绝对测量”和“相对测量”两大类:

   (1)绝对测量法:是测量电磁场的垂直分量和水平分量的振幅值和它们相对于—次场相位移的方法。试验中是利用样品由光吸收(光发射)所引发的电子发射,通过高温(热发射)、或者电场(场发射),以及使用电子隧穿效应进行测量获得的光谱,从而提供提供反应了样品电子结的功函数等信息。最常用的仪器是紫外光电子能谱仪(UPS)。

   (2)相对测量是指激发场源是定源的条件下,测最沿侧线相邻两点的振幅比和相位差的方法。实验上,是使用二极管的阴极电流或者样品与参照物的间由人工改变的两者间电容导致的位移电流等方法来测量的。最常用的仪器是扫描开尔文探针系统(SKP)。

Sunday, May 9, 2021

关于状态密度、能态密度和有效能级密度的区别

 

这三个概念都是用来描述晶体电子特性的一些物理量,在确定电子的分布和浓度等场合中具有重要的作用。然而,这三个量往往容易被混淆。实际上它们各具有不同的物理意义,必须要区分清楚。

(1)状态密度:

晶体电子的状态密度是指单位波矢空间中的状态数(即代表点的分布密度)。

因为晶体电子的状态不能采用坐标和动量来表征(不是经典电子之故),但是在自由电子近似下,可以采用晶体动量k(即波矢)来表征,波矢的大小|k|=1/λ,λ是电子波的波长。

由晶体动量的三个分量可构成所谓k空间(波矢空间),该空间中的每一个点即代表晶体电子的一个状态。不过,由于晶体周期性势场的缘故,只需要k空间中的一个对称性原胞——维格纳(Wigner)-赛兹(Seitz)原胞中的代表点即可(其中就包含了所有的电子状态),该维格纳-赛兹原胞往往被称为Blliouin区。同时,这些代表点在Blliouin区中的分布是均匀的。而在晶体体积为V时,边界条件就限制了每一个代表点所占据的大小为1/V,所以Blliouin区中代表点的分布密度即为V(即状态密度与晶体体积成正比),这就是晶体电子的状态密度。(注:若令|k|=2π/λ,则状态密度=V/(2π)3 。)

(2)能态密度:

晶体电子的能态密度是指单位能量范围中的状态数。 把上述k空间中的状态密度概念转换到能量空间中来,即可得到能态密度。

从晶体能带来看,如果每一条能级有一个电子状态(即忽略电子自旋的状态),则能态密度也就是能带中的能级密度。由于能级在能带中的分布是不均匀的(即与能量相关),因此晶体电子的能态密度是能量的函数,故可称为能态密度函数。

在自由电子近似下,能态密度函数N(E)与能量E之间有亚抛物线关系:

第一张图

该关系的比例系数是与晶体体积和电子有效质量有关的常数。在半导体的导带底和价带顶附近处载流子的能态密度就满足这样的关系。

(3)有效能级密度:

能带的有效能级密度(或者有效状态密度),是在简化讨论半导体载流子浓度时所引入的一个物理量。只要把上述的能态密度概念应用于半导体载流子的统计,即可得到有效能级密度。

半导体载流子也就是处于导带和价带中的电子和空穴,所以有效能级密度也就有导带有效能级密度和价带有效能级密度之分。

在Boltzmann近似下,对于导带的电子来说,如果把导带中的所有可能占据的能级都归并到导带底(Ec)一条能级上(见图示),那么电子占据各条能级的几率就都将一样(等于exp[-(Ec-EF)/(kT)]),于是就可立即写出导带电子浓度与Fermi能级EF的关系为

第二张图

式中的Nc是归并到一起的、导带底Ec的能级密度,即单位能量范围内的能级数目(未考虑电子自旋状态),这就称为导带的有效能级密度。

可见,有效能级密度就是把整个导带和价带分别归并为一条导带底和一条价带顶的能级时,其中所包含的等效能级(状态)的数目。它的特点是:①有效能级密度并不是整个能带的、真实的能级密度,只是计入了能带中一部分能级之后的密度;②未考虑各条能级的能量差异,而是采用了一条能级来等效处理的结果;③温度越高,电子的能量就越大,则在导带中可能占据的能级数目就越多,因此有效能级密度将会随着温度的升高而增大;④因为电子可能占据的能级数目以及用一条能级来等效处理的结果,都与电子的有效质量和能带极值点的数目有关,所以有效能级密度与晶体的能带结构有关。总之,有效能级密度不同于上述的能态密度N(E)(即能级密度),而是一个与能带结构和温度有关的常数。

同样,在Boltzmann近似下,对于价带的空穴,在估算空穴浓度时,也可以把价带中的所有可能占据的能级都归并到价带顶(Ev)一条能级上(见图示),该归并到一起的能级Ev的密度即为Nv,称为价带的有效能级密度。价带空穴的浓度可以给出为

第三张图

       在室温下,对于Si:Nc=2.8×10 19cm–3,Nv=1.0 4×10 19cm–3;对于GaAs:Nc=4.7×10 17cm–3,Nv=7.0×10 18cm–3。可见,不管是导带、还是价带,其有效能级密度都远小于晶体的原子密度(~5×10 22 cm–3)。这就表明,在Boltzmann近似适用的非简并情况下,导带电子只是占据导带中的很少一部分能级(这时电子基本上就处在导带底附近),空穴也只是占据价带顶附近的一小部分能级。因此,在讨论半导体载流子的输运问题时,往往只考虑导带底和价带顶的状况即可。
       注意:① 这里的有效能级密度概念只适用于非简并半导体。因为对于高掺杂和低温下的简并半导体,需要考虑Pauli原理和Fermi分布函数,则载流子浓度与Fermi能级的关系就没有上述那么简单,从而也就不可能只是简单地采用有效能级密度来处理问题了。②在有效能级密度(Nc和Nv)中所牵涉到的载流子有效质量与能带的有效质量有所不同,这里的有效质量往往称为状态密度有效质量(既计入了能带的有效质量,还计入了能带极值的情况)。
http://muchong.com/t-8704467-1