水声换能器是利用晶体(石英或酒石酸钾钠)压电陶瓷(钛酸钡和锆钛酸铅等)的压电效应或铁镍合金的磁致伸缩效应来进行工作的。所谓压电效应,就是把晶体按一定方向切成薄片,并在晶体薄片上施加压力,在它的两端面上会分别产生正电荷和负电荷。反之在晶体薄片上施加拉伸力时,它的两个端面上就会产生与加压力时相反的电荷。与压电效应相反时电致伸缩效应,即在晶体的两个端面上施加交变电压,晶体就会产生相应的机械变形。我们利用电致伸缩效应和压电效应来产生和接收超声波。
一、换能器及基阵
能够发射或接收声波,并完成声波所携带的信息和能量与电的信息和能量转换的装置,就称为电声换能器,简称换能器。将多个换能器按一定的规律和形状排列起来,形成一个阵列,就成为换能器基阵,简称基阵。常见的基阵有:线列阵、平面阵、圆柱阵、球形阵、参量阵、乘积阵、合成孔径阵、恒定束宽阵、舷侧阵、共形阵和拖曳线列阵等等。
水声换能器是完成水下电声信号转换的器件,它是电子设备与水下信号声场间相互联系的纽带。鉴定一部水声仪器性能的好坏,往往是首先看它的换能器性能如何。
二、水声换能器分类
1、按工作形式可分为发射换能器和接收换能器。
2、按结构形式可分为球形换能器、圆管换能器、弯曲圆盘换能器、复合棒换能器、镶拼圆环换能器、弯张换能器、矢量水听器和光纤水听器等。
3、按电场性换能材料可分为压电单晶、压电陶瓷(如钛酸钡、PZT)、压电薄膜(如PVDF)、压电复合材料(如1-3压电复合材料)和弛豫型铁电单晶等。
4、按磁场性的换能材料可分为电动式、电磁式、磁致伸缩式、铁磁流体和超磁致伸缩稀土材料等。
5、其他:带有匹配层的换能器、电火花声源、MEMS水听器阵列和带有反声障板的声基阵。
三、水声换能器应用
目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。这里仅介绍几种在水下探测方面的应用:
(1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。根据测深深度的不同,测深换能器的频率和功率也相差甚远。以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。对这类换能器的要求是波束稳定、主波束尖锐。
(2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。一般工作频率在100kHz~500kHz。
(3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。
四、主要参数
水声换能器的主要性能指标有;水中工作频率、工作频率范围、频带宽度、发射声源级(声功率)及发射响应、指向性、接收灵敏度及接收灵敏度响应、发射效率、品质因素、阻抗、最大工作深度、尺寸和重量等。其中:
(1)工作频率
水声换能器的工作频率或工作频率范围通常是由声纳设备的工作频率确定的。换能器的阻抗、指向性、灵敏度、发射功率、尺寸等都是频率的函数。一般说来,对发射换能器要计算它在谐振频率上或在谐振频率附近有限频带内的性能指标,在这个频率及其附近有最大的发射效率。对于宽带接收换能器(压电换能器)谐振频率应远高于接收频带的上限,以保证宽带内有平坦的接收响应且要计算它在谐振频率及其以下频段内的接收响应。大型低频声纳换能器的频率在数十赫到数千赫,而小型目标探测声纳换能器在数十千赫到数百千赫。
(2)指向性
不管是换能器还是换能器阵,它们的发射响应或接收响应会随着相对于它们的方向改变而变化。这就是换能器具有指向性,发射换能器发射的声波如同探照灯射出的光束一样。由于换能器具有指向性就可以把声能聚集到某个方位发射,使能量更加集中。采用许多换能器组成尺寸更大的基阵,在相同的频率上指向性更加尖锐,能量更加集中,发射的距离更远,在接收状态下信噪比更大,作用距离也越远。
(3)阻抗(或导纳)特性
换能器在谐振频率附近可以看成一个简单串并联的等效电路。电路中的每一个电阻、电容或电感表示该换能器固有特性,这就是换能器阻抗(或导纳)特性。掌握了换能器的阻抗特性才能使它与发射机的末级回路或接收机的输入电路相匹配。换能器的阻抗(或导纳)是一个复数,它是频率的函数,一般可表示成:Z(w)=R(w)+jX(w) (单位:欧姆)。
在机械共振时动态无功抗趋于零,静态容抗可用匹配电感调谐此时可以把它看成一个纯阻。压电换能器电阻抗一般在数十欧姆到数千欧姆的范围内。
(4)发射功率
发射换能器的功能是将电子发射机的电功率转变为机械振动的机械功率,再把机械功率转变为声功率发射出去。发射声功率是指换能器在单位时间内向介质中辐射能量多少的物理量,功率的单位用瓦表示。换能器的发射功率受额定电压(或电流)、动态机械强度、温度及介质特性等因素的制约。
(5)发射响应
能够全面反映发射换能器性能指标的是发射响应,主要有发射电压响应和发射电流响应。发射电压响应SV的定义是指发射换能器在指定方向上离其有效声中心d0米距离上产生的自由场表观声压Pf与加到换能器输入端的电压U的比值:SV=Pfd0/U。发射电压响应通常用分贝表示。
发射电流响应是指发射换能器在指定方向上离其有效声中心d0米距离上产生的自由场表观声压Pf与加到换能器输入端的电流I的比值:SI=Pfd0/I 。发射电压响应通常用分贝表示。
(6)接收灵敏度
换能器的自由场电压灵敏度指的是接收换能器在入射声波的作用下,输出端的开路电压U(w)与自由场中(假设接收换能器不存在时)它的声中心所在点的声压Pf(w)的比值M(w)。对于接收换能器而言,需要在很宽的频率范围内接收入射声信号,而压电换能器通常是在低于谐振频率的宽频带范围内工作。
(7)接收灵敏度的起伏
宽带接收换能器要求在使用的频范围内有比较平坦的接收响应。通常规定在工作频段内接收电压灵敏度起伏量为±1.5dB。
五、结语
声波是迄今为止人类所掌握的唯一能在海洋中远距离传递信息与传播能量的载体,由此水声换能器也被人们形象的比喻为声纳系统的“耳目”。随着水声技术应用领域的不断拓展与延伸,在海洋资源探测开发的技术竞争、军事对抗及全面感知地球的迫切需求背景下,水声换能器技术的飞速发展成为声纳技术发展的重要前提。
水声换能器技术包含新材料、新原理、新结构和新工艺。
材料技术:有源材料(压电材料和磁致伸缩材料),无源材料(吸声、反声、透声、去耦和结构);
设计技术:理论、结构和匹配设计;
制作技术:加工、装配和灌封。
No comments:
Post a Comment